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Introduction



Why do we care?

Theory of random graphs = the intersection of graph theory

and probability.

Very active area of research. Why?
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Why do we care?

(i) interesting and surprising objects, uncovering properties of

typical graphs, supporting conjectures but sometimes provides

counterexamples.

– Binomial random graphs (expected degree 3), 1959

– Random 3-regular graphs

– Chung-Lu model (given expected degree distribution w)

– Random graphs with given degree distribution w
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Binomial Random Graphs

Binomial Random Graph G(=, ?)

The binomial random graph G(=, ?) can be generated by

starting with the empty graph on the set of nodes

[=] = {1, 2, . . . , =}. For each pair of nodes 8 , 9 such that

1 ≤ 8 < 9 ≤ =, we independently introduce an edge 8 9 in �

with probability ?.
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Random 3-regular graphs
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Random 3-regular graphs
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Random 3-regular graphs

6



Random 3-regular graphs
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Random 3-regular graphs

in:*
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Why do we care?

(ii) provide better understanding of underlying mechanisms

that create networks.

– Preferential attachment model explains power-law degree

distribution (“rich get richer”), 1999

– . . .
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Power-law distribution

Real-world networks typically do not have Poisson distribution:

think of Instagram with Cristiano Ronaldo and Ariana Grande,

having 216M+ and, respectively, 183M+ followers (May 2020).
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Power-law distribution

Real-world networks typically do not have Poisson distribution:

think of Instagram with Cristiano Ronaldo and Ariana Grande,

having 216M+ and, respectively, 183M+ followers (May 2020).

Typically, degree distribution follows power law:

3ℓ ≈ 2 · ℓ−�

for some parameter � > 0 (degree exponent) and normalizing

constant 2 > 0.

First observed by Vilfredo Pareto, a 19th-century economist,

who observed that a few wealthy individuals posses the

majority of world wealth.
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Why do we care?

(ii) provide better understanding of underlying mechanisms

that create networks.

– Preferential attachment model explains power-law degree

distribution (“rich get richer”), 1999

– . . .

– Protean graphs, 2006

– . . .

– Models of social learning (“homophily and aversion implies

segregation”)

– . . .
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Why do we care?

(ii) provide better understanding of underlying mechanisms

that create networks.

– Preferential attachment model explains power-law degree

distribution (“rich get richer”), 1999

– . . .

– Protean graphs, 2006

– . . .

– Models of social learning (“homophily and aversion implies

segregation”)

– . . .

...but these two reasons are not related to data science.
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Why do we care?

(iii) create synthetic networks that closely resemble real-world

networks but are flexible so that one can test various scenarios.
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Why do we care?

(iii) create synthetic networks that closely resemble real-world

networks but are flexible so that one can test various scenarios.

(iv) can be used to benchmark the outcomes of algorithms (for

example clustering algorithms); serve as the so-called

null-models.
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Why do we care?

(iii) create synthetic networks that closely resemble real-world

networks but are flexible so that one can test various scenarios.

(iv) can be used to benchmark the outcomes of algorithms (for

example clustering algorithms); serve as the so-called

null-models.

Very active area of research.
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Community Detection



Community Detection — Introduction
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A network has community structure if its set of nodes can be

split into a number of subsets such that each subset is densely

internally connected. 12



Community Detection — Introduction
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social networks: communities based on common location of

their users, their interests, occupation, gender, age, etc.
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Community Detection — Introduction
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web graph: web pages that belong to the same community are

on a similar topic.
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Community Detection — Introduction
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protein-protein interaction networks: proteins that belong to

the same community are often associated with a particular

biological function within the organizm. 12



Community Detection — Introduction

Finding the right partition that represents the community

structure is a challenging but important problem for a number

of reasons.
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– see a “big picture” (large scale map with individual

communities represented as meta-nodes),
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Community Detection — Introduction

Finding the right partition that represents the community

structure is a challenging but important problem for a number

of reasons.

Communities allow us to...

– see a “big picture” (large scale map with individual

communities represented as meta-nodes),

– better understand the function of the system represented by

the network,

– classify the nodes based on the position they have in their

own clusters and how they are connected to other clusters:

roles and importance,

– . . .
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Generating Synthetic Networks

Purpose: testing and tuning unsupervised algorithms

(typically the ground truth is not available!).

– SBM (Stochastic Block Model),

– LFR,

– ABCD + ABCDe (parallel counterpart),

– New trend: generating synthetic higher-order structures.
14



Graph Modularity — Definition

'

Let A= {�1 , �2 , . . . , �ℓ } be a given partition of + .
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Graph Modularity — Definition

a

Let A= {�1 , �2 , . . . , �ℓ } be a given partition of + .

This partition captured
∑

�8∈A 4�(�8)/|� | fraction of edges

(edge contribution). Should we be happy with this?
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Graph Modularity — Definition

a :

Let A= {�1 , �2 , . . . , �ℓ } be a given partition of + .

This partition captured
∑

�8∈A 4�(�8)/|� | fraction of edges

(edge contribution). Should we be happy with this? No!

Compare it to the expected fraction of edges captured by this

partition in the Chung-Lu model with the (expected) degree

distribution d =
(
deg(E1), deg(E2), . . . , deg(E=)

)
. 15



Graph Modularity — Definition

The expected fraction of edges is equal to

1
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Graph Modularity — Definition

Modularity for graphs is based on the comparison between:

a) the actual density of edges inside a community (the edge

contribution), and

b) the expected density if nodes of the graph were wired

randomly, regardless of community structure (the degree tax).
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Graph Modularity — Definition

Modularity for graphs is based on the comparison between:

a) the actual density of edges inside a community (the edge

contribution), and

b) the expected density if nodes of the graph were wired

randomly, regardless of community structure (the degree tax).

Such reference random graph is known in this context as the

null-model.
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Graph Modularity — Definition

Modularity function:

@�(A) =
∑
�8∈A

4�(�8)

|� |
−

∑
�8∈A

(vol(�8))
2

(vol(+))2

iii. iii.
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Graph Modularity — Definition

Modularity function:

@�(A) =
∑
�8∈A

4�(�8)

|� |
−

∑
�8∈A

(vol(�8))
2

(vol(+))2

Some properties:

– @�(A) ≤ 1,

– If A= {+}, then @�(A) = 0,

– If A= {{E1}, . . . , {E=}}, then @�(A) = −
∑

deg2(E)

4|� |2
< 0,

– @�(A) ≥ −1/2.
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Graph Modularity — Definition

Modularity function:

@�(A) =
∑
�8∈A

4�(�8)

|� |
−

∑
�8∈A

(vol(�8))
2

(vol(+))2

Some properties:

– @�(A) ≤ 1,

– If A= {+}, then @�(A) = 0,

– If A= {{E1}, . . . , {E=}}, then @�(A) = −
∑

deg2(E)

4|� |2
< 0,

– @�(A) ≥ −1/2.

@∗(�) = max
A

@�(A)

(Well defined but impossible to find in practice.

Used to guide a heuristic algorithms that try to maximize it.)
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Hypergraphs
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– hypergraphs (left) better represent many complex networks,

including social networks,

– unfortunately, there are very few tools and so they are usually

reduced to their 2-sections (right),

– but the situation changes: hypergraph modularity function.
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