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Opinions on quantum mechanics

Richard Feynman (1918-1988)

| think it is safe to say that no
one understands quantum
mechanics. Do not keep saying
to yourself, if you can possibly
avoid it, “But how can it be like
that?” because you will get
“down the drain” into a blind
alley from which nobody has yet
escaped. Nobody knows how it
can be like that.

- Richard Feynman

Those who are not shocked
when they first come across
quantum mechanics cannot
possibly have understood it.

- Niels Bohr



Our plan

Quantum computing

Game theory in economics

EWL approach to quantum game theory
Pareto efficiency of quantum mixed
equilibria
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Quantum computing advantages

Wave-particle duality = every particle or quantum entity may be
described as either a particle or a wave..

It expresses the inability of the classical concepts "particle” or
behavior of quantum-scale objects.

ITISUSEDTO INTERACTWITH QUBITSTHROUGH INTERFERENCES

wave to fully describe the

Pr‘{)bablhstlt system =2 any given state can be observed.
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be observed if the system is measured.

* Quantum computation is performed by increasing the probability of observing the correct
state to a sufficiently high value so that the correct answer may be found with a reasonable

amount « ]I'-I:,i—l |r.|'.-'
A QUANTUM RESULT IS GENERALLY AN EVALUATION OF THE QUBITS
FINAL STATES.

Bult In general, a quantum computer with n qubits

[ can be in any superposition (as Schrodinger’s
cat) of up to 2" different states. This compares
to a normal computer that can only be in one of
these 2" states at any one time.

? Quantum Technologies. Market and Technology Report 2020. Yole Developement




Quantum computing advantages

4
Superpused states = can be in all possible states at the same time. 7HS) ?‘ﬁ‘)

Quantum Computing. A technology of the future already present. PwC point of view 2019

down at the same time.

« THIS ALLOWS SUPERPOSED CALCULATIONS, THUS DRAMATICALLY
DECREASING COMPUTING TIME

classical equivalents. Entanglemant

Quantum Technologies. Market and Technology Report 2020. Yole Developement

With respect to a quantum camputer, this means that a quantum register exists in a superposition iﬂ_:ii
of all its possible configurations of U's and |'s at the same time, unlike a classical system whose - :. -
register contains only one value at any given time. It is not until the system Is observed that it B =mmEi
collapses inte an observable, definite classical state. For example, the electron spin can be up and ! !-:-E
e |

Entanglement = cannot be decomposed into more fundamental part.

Two u:Ii'stil'r:_t elements of a system are entangled if one part cannot be described without taking the
other part into consideration.

An n:spn:mljf interesting C|Ln|1t;.r of guantum entanglement is that elements of a quantum system may
be entangled even when they are separated by cansiderable Space,

Quantum teleportation, an important concept in the field of quantum cryptography, relies on
entangled guantum states to send quantum information adequately accurately and over ralatively
long distances.

ENMTANGLEMNT IS USED TO LINK THE QUBITS (1 or 3-qubits logic gate) IN
QUANTUM COMPUTING AND SYNCHRONIZE THEM.

This two properties confer a

sort of parallelism to a QC and -———— ,@
bring the freedom to program

designers, to do better than

Irrsbantaneau& aclion at distance
Particle A Particla B

Single qubits measurement




Quantum public investments

Europe:
flagship
project of
£1.2B.ovor Russia;
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Europe is setting up a quantum effort to compete with US. [N Eun:rpe UK was first to invest in QC (2013}

China is also involved in QC (Huawei, Alibaba ___ ). They are at 10-20 guhits development today. so |ate compared to LIS
but China wants to be world quantum leader in 2024 ($10B investment). Map above shows major investments. There are
also investment plans in Canada, Australia, Netherlands, Japan, Austria, Singapore.

More than $16B worldwide

Quantum Technologies. Market and Technology Report 2020. Yole Developement



Quantum computing aplications
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Physical qubits roadmap

rigetti Dawaue
Graph bolow shows phrsical gubics roadmap (26 be remembered: for @ quantum ogmpuren 50 e qubizs minimun are requircd = ic mcans 5000 physical qubies)
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Nobel prizes for applications of GT to economics:

1994 Nash, Harsanyi, Selten “for their pioneering analysis of
equilibria in the theory of non-cooperative games”

2005 Aumann i Schelling “for having enhanced our understanding
of conflict and cooperation through game-theory analysis”

2007 Leonid Hurwicz, Eric Maskin i Roger Myerson ,,for having laid
the foundations of mechanism design theory”

2012 Alvin Roth, Lloyd Shapley , 7or the theory of stable allocations
and the practice of market desigr’.

2020 Raul Milgrom, Robert Wilson " for improvements to auction
theory and inventions of new auction formats. "

e o | 2001 “Beatiful mind”
RoBert Aumann ' Selt £ movie about Nash



Games and probability distributions
We consider two player games

G = (N, {SX}X(:‘NI {PX}XEN)
where:

N = {A, B} is the set of players
S, =1{4,,4:}, Sg = {B,y, B;} are possible pure strategies

Py:Sy x Sp - {v% e R |i,j = 0,1}, X = A, B, are payoff functions,
represented by the game bimatrix

((Uéqo» V(])go) (U641» V(])31)>

(77140» Vfo) (Ufp 77{31)

Let

A(Sy X Sp) = {Zi,j=0,1 0i;A;B; | Oij = O'Zi,j=0,1 Oij = 1}

be the set of probability distributions over S, x Sg



Mixed strategies and Nash equilibria

If the set of probability distributions can be factorized

(Uoo J01) _ ( 0403 04(1 = 0p) )
010 011/ \(1—o0y)oz (1—-0y)(1—03)
they define mixed strategies o,, oz€ [0,1].

The mixed classical game is

G™* = (N,AS,,ASg, AP, APg)

where A(Sy) = {oxXo + (1 —0x)X; | 0 < oy < 1} = [0,1].

The executor performance
depends on the
goalkeeper's strategy

Mixed strategies form a subset of all probability distributions
0% .1(%0%
0 goalkeeper to the righ

AS, X ASp © A(S, X Sg) 10

[ [ » g [ 90

The pair of strategies (a,;,05) € AS, x AS; is a Nash equilibrium w0
if AP, (o}, 05) = AP (0,,05) and APz(o),05) = APz(oy, 05), 70
60
for each oy € ASy, X = A, B 50

= pxecutor |eft ==—executor right



Pareto optimality
and correlated equilibria

A pair of strategies (g,,05) € S is not Pareto optimal in S if there exists
another pair (¢,',05") € S that is better for one of the players and not

worse for the other. Otherwise (o,,05) € S is called Pareto optimal.

Probability distribution {O-ij}l,]=0,1 over set of strategies (4;, B;); j=o1
of the game G is a correlated equilibrium iff

A A B B
2.j=010ij Vij Z Xj=0,101j Vi N Xjo1 0 Vi 2 X j0,1 9ji Vj(-i)

—

where —i # i is the index of the remaining strategy.




Efficiency of selected classical games

prisoner’s
dilemma

Ao
Ay

Bob
By By
(3,3) (0,5)
(5,0) (1,1)
0=20
o1 =1

Payoff B

battle of the Bob
sexes
By B,
8 AO (312) (11 1)
< 4 (0,0) (23)

3009 = 01, Ogp = 3079
30'11 > 001, 011 > 30'10

1 2 3

NE @ s
@ CE
A(Sx % Sg)
©)-
PJE<:> NE
AS, X ASg
. 41
1/2
OcE = ( 0
1o
1 2 3
Payoff A

1/2

)



Payoff B

Efficiency of selected classical games

Chicken Dr'Ver B
< By B,
8 4, (1,00 (-10,-10)

Oo0 < 100'01, 0p0 < 100'10
100'11 < 001, 100-11 < 010

=10 -5 0o 1
T @) Ce
oF @Q\o)
NE
(0 1/2
5| °cE=X1/2 0 -5
=10 & 4=-10
-1IC| -Iﬁ [;I 1I
Payoff A

chicken 2 Player B
< B B,
% 4, (44 (1,5
o 4 (G1) (00

000 < 0g1, Ogo < 019
011 < 0p1, 011 < 019

c 1+ 2 8 4 &

i L (1/3 T 1/3)
““ \1/3] 0
©) CE

3 3

NE @

ar

| ©

] Q

(0 2 | 4




Quantum game preliminaries

The standard quantum game in Eisert-Wilkens-Lewenstein quantization
scheme is: (Eisert et al, PRL 83, 3077 (1999)

gy = (N ) {UX}XEN' {HX}XEN)
where:

N = {A, B} is the set of players

The unitary transformations U, = U(0,, a4, B4), Ug = U(65, ag, Bs)
By o

- i . Ux
eldx 0057 ietPx Sm7
U(QX»aXMBX) — 0 9 )
. 7 . X _la X
ie X gin—= e X cos —
2 2
QX (S [O, T[], Ay, ﬁX (S [O,ZT[],X = A,B C‘-(‘?--"-ﬁ.’::' n
| ' .‘ ! \"ll
are quantum strategies. 0ol v o |
1) = «lo) 837 7 = 9.5, ,8) 1%
() («,8)= = ]

1% "'-"‘_-ILF



Quantum game payoffs

[,:SU(2) x SU(2) = R are payoff functions defined by:
~ o~ 2
My (Ua, Us,¥) = ka0 Vet (Wit 0| Ua®Us [Y))| ) X = A, B

Wi, (1)) = Ce®C [P (¥))

In case of a fully quantum case y = /2 :
l_[X(UA' UB) = Dk,1=0,1 Pri]? vl)c(l’ X =A4,B,

where:
|Doo]® = cos%cos%cos(% + ag) + sin%sin%sin(ﬁA +B),  |0lg X ﬁT (F——H
1Po1|? = cos%‘sin%cos(% — Bg) + sin%cos%sin(% — B4, |G}QI—F H
prol? = cos 2sin 2 sin(a — i) + sin L cos L cos(ay — ), V0 [H l TH
Ip11|? = cose—Acosg—Bsin(aA + ap) — sinH—Asing—Bcos(,BA + Bg). |U}:J]-i I H

2 2 2 2

-H.'l
.
N




EWL approach

The quantum EWL approach to the game is

Player A

N

100y —==| J | lo) JH == wy)

Player B
where: |00) is the initial state

j= %(i +i0,®0,),]T are the entangling, disentangling operators,

; 6 . . 0
R e'®X cos =+ ietPx sin—-
UX(HX)aX;ﬁX) — L . 0X o 6X 5X :AIBa
ie~Px sin—= e tax cos—=

|¢f> = X j=01Pij |ij); is the final state defining the game payoffs



Quantum Pauli strategies

Strategies U, = U(84, ay, f4) and Uy = U(Bg, ag, Bz),

: 0 Cipe .6
elax cos =X jelPx gin =X

Uy 6y, ay, fx) = ( 2 g > are generated by Pauli strategies:

ieiPx sinez—X e~ lax cos7X
— = 1 0
) o i PO - U(O;OJ,B) — (O 1)5
5 |;>_(0) o 0
E Px—U(n,a,n)—(_l, 0),
: ~ (0 -1
17(_1[) ? i(—ll) P,=U(m, amrn/2) = (1 (g) ),
V& N Y _ _ l
AR o -, 9)
' ‘\\\\‘E ":}”” !
A2 o ' !
l(]) » /'\"' g .: \\{. \~“\‘~,‘ ;(1) where
2V S (0 1) _ (0 —i) _ (1 0 )
47 : - =1 o7\ 0770 -1/
X o y

are Pauli matrices

o
"

I
S
—0
o —



Classical limit of the qguantum game

Le us assume a = =0, in this case

. 6 . 6 e
U(,0,0) =cos=I +isin—o, L
is equivalent to the classical mixed strategy .
B 1
7] 7]
2 9B 2 7B
coS 5 Sin 5
04
< cosT— (200, boo) (ao1,bo1)
2 04
St =~ (@10, b1o) (a11,b11)
and the payoffa are O =0 Op =T
04 Op 04 Op
= a(bh)gg cos® — cos®* — + a(bh)y; cos® —sin® —
$a8) = a(b)oo > > (b)o1 > >
04 Op

+a(b)qo sin? 7’4 cos? 7B + a(b),, sin? - sin? -



EWL with Frgckiewicz-Pykacz
parameterization

Let us restrict the set of quantum strategies to

R e‘i¢Xc0502—X —e‘i‘pxsine—x

Ux(0x, ¢x ) = oy Oy ” Oy

e rXsin— e vX cos—
P=000)=(; 3
=00 5) =2 o)
B=0mn=(; )
=0005)=( )

 In this parameterization, there are additional Nash equilibria in pure
strategies

* F-P parametrization is invariant with respect to strongly isomorphic
transformation of input games



Quantum Mixed Equilibria

prisoner’s

dilemma

Ao
Ay

Bob
BO Bl
(3,3) (0,5
(5,0) (1,1)

Payoff B

battle of the Bob
sexes
By B,
8 AO (3; 2) (11 1)
< 4 (00 (23)
1 1
A — B — L ) —
ot =of =(3:007)
1 2 3
NE (@
O QME
o CE
A(Sx % Sg)
©
NE@ NE
AS, X ASg
1 2 3
Payoff A




Payoff B

Quantum Mixed Equilibria

chicken Driver B chicken 2 Player B
- B, B, < By By
g 4, (0,00  (0,1) % Ay (44 (L,5)
0 4, (1,00 (-10,-10) o 4 (5,1 (0,0

A— (L, ,l) B_(pll A_(l 1 ) B_ 11
04 =(50,03), 0% = (0,2,3,0) o4 =(2,02,0),0%=C,2,00
~10 -? > _QME 8 L 3 &5 i
i CE St (
ok 0 o QME
NE ‘ 11
O@ CE
3 3
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i al i
: ©)
pe =10 of = Q
10 Z5 0 1 - = 3 4 5
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The absentminded driver paradox *)

Decision problem with imperfect recall

A decision maker is planning a trip home

The highway have two consecutive exits 1 and 2.
Driver can Continue or EXit i}’f{‘ﬂ q .f'T‘:-ﬁ' ﬂ
Payoffs at exits are: ot I SR G ST

0 — catastrophic area . i
A—home, (1 > 2)
1 — motel

0 /

When he arrives at an intersection, the driver cannot tell whether the
intersection leads to the first or the second exit. The expected payoff is

E(p) = p(1 —p)A +p°
where p is the probability of continuing at the intersection

*) Piccione M., Rubinstein A. On the interpretation of decision problems with imperfect recall, Game Econ. Behav. 20, 3-24 (1997).



The absentminded driver with n intersections

The optimal strategy is: 1 if1<?2
Pmax = .
20— 1) if A>2
. A2 . 4
and the payoff for A > 2 is E, 4 = o € ford=4 Epgx =3

The absent-minded driver problem with n intersections:

oo Py BT Ll e el el B el o b PR o P L e R e S et b

(Ol (!
L E E
E(p)=p" (1 —p)A+p"
{ i Ll A
1 ifA<n -
Pmax = (n— 1A if A>n Emax(1 = 2n) = 27 (2111:11) oo %

n(1-1)



Quantum absentminded driver

Let
W (y)) = COS( ) |00) + i Sln( ) |11)

be the arbitrary initial state with the (entanglement) parameter

y € [0,7/2]

The payoff bimatrix of the classical game is

(@n an)

and

w=(y 1) a=( o

represent the two possible actions of the driver ,exit” and ,continue”

(IPe1(¥)) = CkQC P (¥)))

P. Frackiewicz, K. Rycerz, M. Szopa, Quantum absentminded driver problem revisited, subm. to Quantum Inf. Processing



P. Frackiewicz, K. Rycerz, M. Szopa, Quantum absentminded driver problem revisited, subm. to Quantum Inf. Processing

Quantum absentminded driver

The basis vectors are:

Foo) = cos (£)100) = tsin () 111) — {0 ——1)
L110,1()/)) =1 COS( ) |01) — sin (g) 110) \, > |
LIﬁ,o()’)) — Sln( ) |01) + 1 cos (]2/) |1()) | —
LIJ1,1()’)) = lSln( )lOO)—cos( )|11) _M’

Using this, we get payoffs functions of the absentminded driver:
; sl ¥ b

; -l o) r 1 | | i " i " _ . 2 A |:I- 1 [

(Voo () |U== (W ()| = |e™ sin 20 sin ysin” — + — cos —({l‘l_:'[]r«'“‘ + 1] —cos~ + ]_) .
L 2 2 i

@21y | | 2ia G- MO i
(Lo (YNU= | ()| = 5 (r cos 3 + 1= gin 5 sin |,

; o e iy |. N ek " R 1. B ¥ .
(ol )| O5 [ Y = 5 || € cos o+ = 81n e siné# |,

, ~ : o ! . :

_ ) b ) T R S , : 219 - 2

(Wi (DT (1))] = I =19 gin® 5 (i"ii'h_ 5 hi i j) + 5 (r et _ ])4 ¥ 5in 7 cos

b | R



Quantum absentminded driver

The payoff of the absentminded driver is therefore:

vy (U,y) = %/1 |(eZiO‘cosZ + ie2ifsin g) sin9|2 -

2
2
1 .. . 7} . . 7,
Eiemﬁ(—l + e*%)cos? Esiny + e?1@ (cos2 g + e*1Bsin? g) sin? 5
And its maximum is:
I.:Er.- l:' “':II"‘ g : l 9 ;
IHax vp (U, ) == ~ = | Tand 9 —c (n +
UesU(2)7e0.5] 2 for 7 4 S

The dependence of max vy (U, y) on the entanglement y
iS:

Quantum value: E g =2 2= P

: 4
Classic value: E, ,, = 3

=

P. Frackiewicz, K. Rycerz, M. Szopa, Quantum absentminded driver problem revisited, subm. to Quantum Inf. Processing



P. Frackiewicz, K. Rycerz, M. Szopa, Quantum absentminded driver problem revisited, subm. to Quantum Inf. Processing

Different entangled initial state

Let us assume different initial state:

|P(y)) = COS( ) |01) + i sm( ) |10)
The payoff is:

o (U.7) = A (@)U ()] + [(@10(7) 022 (7))[

=]

5 . B i) B 5 Ti
(PHH 5 it “UTE) cin —-) sinf + -H|

o | B
r~..|:|:

[

With the maximum:

) m T 512 g 0
max  vell,v) = max ve (I (H (o, — — r1) —) = ax | sin” 60 +sin —
resu(2).vel0.5 fe|0.x| 4 2 (0,7
e ]
at 0 = arccos

and is equal to:

| 1 m s B% 2
Ui ({-‘ (alc; (5 - 9}1 0, — r.‘x) _ _-}) — ——— Emax — 2§

)



Unentangled initial state

Let us assume unentangled initial state:

12(y)) = COS( ) |00) + i sm( ) |10)

the maximal payoffs for A = 4 corresponding to different initial states are:

Plax W
40k — —
—
. [2())
' -
i e
307 -
‘,J'
. s |D(¥))

k3 |5

ax

P. Frackiewicz, K. Rycerz, M. Szopa, Quantum absentminded driver problem revisited, subm. to Quantum Inf. Processing



Absentminded driver with n-intersections

The initial state is: i
0) + 4|13y
9) = (D) g
V2
And the orthogonal basis for n-intersections is

Vi@ V@ @V, |U),V; € {1.i0,}}

The optimal strategy for this problem is
W) = U(0,7/2,0)%" W)
because
<1J‘jll..,ll_]|lj_jj':? — (_I,. }”— | J
and, as a result:

(U (0, 7/2,0)8™) = A

P. Frackiewicz, K. Rycerz, M. Szopa, Quantum absentminded driver problem revisited, subm. to Quantum Inf. Processing



Quantum Computer

https://quantum-computing.ibom.com/
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Irobabilitios

Quantum absentminded driver
on IBM-Q
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P. Frackiewicz, K. Rycerz, M. Szopa, Quantum absentminded driver problem revisited, subm. to Quantum Inf. Processing



Conclusions

Correlated equilibria significantly improve paretoefficiency of Nash
equilibria and they can be obtained in quantum games

Quantum games give players new strategies not available in classic
games and strongly depend on the parameterization used

Nash equilibria of quantum in mixed strategies are close to
paretoefficiency of correlated equilibria

FP parameterization provides a strong isomorphism of the quantum
game and gives the same Nash equilibria in mixed strategies as full
SU(2) parameterization of EWL

The entanglement of initial state is not necessary to define the
gquantum absentminded driver model, the key issue is the coherence
of quantum evolution

The expected payoff of QAD is an increasing function of the
entanglement y and reaches the highest possible value of A for
separable initial state



