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Opinions on quantum mechanics
I think it is safe to say that no 

one understands quantum 

mechanics. Do not keep saying 

to yourself, if you can possibly 

avoid it, “But how can it be like 
that?” because you will get 
“down the drain” into a blind 
alley from which nobody has yet 

escaped. Nobody knows how it 

can be like that.

- Richard Feynman

Richard Feynman (1918-1988)

Those who are not shocked 

when they first come across 

quantum mechanics cannot 

possibly have understood it.

- Niels Bohr



Our plan

• Quantum computing

• Game theory in economics

• EWL approach to quantum game theory

• Pareto efficiency of quantum mixed
equilibria

• Quantum absentminded driver

• IBM Q simulations



Quantum computing advantages

Quantum Technologies. Market and Technology Report 2020. Yole Developement

In general, a quantum computer with 𝑛 qubits
can be in any superposition (as Schrodinger’s
cat) of up to 2𝑛 different states. This compares
to a normal computer that can only be in one of 
these 2𝑛 states at any one time.



Quantum computing advantages

Quantum Technologies. Market and Technology Report 2020. Yole Developement

This two properties confer a 
sort of parallelism to a QC and 
bring the freedom to program 
designers, to do better than
classical equivalents.
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Quantum public investments

Quantum Technologies. Market and Technology Report 2020. Yole Developement

More than $16B worldwide



Quantum Technologies. Market and Technology Report 2020. Yole Developement

Quantum computing aplications



Physical qubits roadmap

Quantum Technologies. Market and Technology Report 2020. Yole Developement



Alvin Roth

Nobel prizes for applications of GT to economics:

1994 Nash, Harsanyi, Selten “for their pioneering analysis of 
equilibria in the theory of non-cooperative games”

2005 Aumann i Schelling “for having enhanced our understanding 
of conflict and cooperation through game-theory analysis”

2007 Leonid Hurwicz, Eric Maskin i Roger Myerson „for having laid 
the foundations of mechanism design theory”

2012 Alvin Roth, Lloyd Shapley „for the theory of stable allocations 
and the practice of market design”.

2020 Raul Milgrom, Robert Wilson "for improvements to auction 
theory and inventions of new auction formats."

Thomas 
ShellingLeonid Hurwicz

Game theory and economics

Lloyd Shapley

2001 “Beatiful mind” 
movie about Nash

John Nash

Oskar Morgenstern 
i John von Neumann

Reinhard 
Selten

Paul Milgrom Robert Wilson

Robert Aumann

„Theory of Games and Economic Behaviour” 
J. von Neumann and O. Morgenstern 1944



We consider two player games𝐺 = 𝑁, 𝑆𝑋 𝑋𝜖𝑁, 𝑃𝑋 𝑋𝜖𝑁
where:𝑁 = 𝐴, 𝐵 is the set of players𝑆𝐴 = 𝐴0, 𝐴1 , 𝑆𝐵 = 𝐵0, 𝐵1 are possible pure strategies

𝑃𝑋: 𝑆𝐴 × 𝑆𝐵 → 𝑣𝑖𝑗𝑋 𝜖 ℝ 𝑖, 𝑗 = 0,1}, 𝑋 = 𝐴, 𝐵, are payoff functions, 

represented by the game bimatrix𝑣00𝐴 , 𝑣00𝐵 𝑣01𝐴 , 𝑣01𝐵𝑣10𝐴 , 𝑣10𝐵 𝑣11𝐴 , 𝑣11𝐵
Let Δ 𝑆𝐴 × 𝑆𝐵 = σ𝑖,𝑗=0,1 𝜎𝑖𝑗𝐴𝑖𝐵𝑗 𝜎𝑖𝑗 ≥ 0,σ𝑖,𝑗=0,1𝜎𝑖𝑗 = 1
be the set of probability distributions over 𝑆𝐴 × 𝑆𝐵

Games and probability distributions



If the set of probability distributions can be factorized𝜎00 𝜎01𝜎10 𝜎11 = 
𝜎𝐴𝜎𝐵 𝜎𝐴 1 − 𝜎𝐵1 − 𝜎𝐴 𝜎𝐵 1 − 𝜎𝐴 1 − 𝜎𝐵

they define mixed strategies 𝜎𝐴, 𝜎𝐵𝜖 0,1 . 

The mixed classical game is𝐺𝑚𝑖𝑥 = 𝑁, ΔS𝐴, ΔS𝐵 , ΔP𝐴, ΔP𝐵
where Δ(𝑆𝑋) = 𝜎𝑋𝑋0 + 1 − 𝜎𝑋 𝑋1 0 ≤ 𝜎𝑋 ≤ 1} ≡ [0,1].
Mixed strategies form a subset of all probability distributionsΔS𝐴 × ΔS𝐵 ⊂ Δ 𝑆𝐴 × 𝑆𝐵
The pair of strategies 𝜎𝐴∗, 𝜎𝐵∗ 𝜖 ΔS𝐴 × ΔS𝐵 is a Nash equilibrium

iff ΔP𝐴 𝜎𝐴∗, 𝜎𝐵∗ ≥ ΔP𝐴 𝜎𝐴, 𝜎𝐵∗ and  ΔP𝐵 𝜎𝐴∗, 𝜎𝐵∗ ≥ ΔP𝐵 𝜎𝐴∗, 𝜎𝐵 ,

for each 𝜎𝑋 𝜖 ΔS𝑋, 𝑋 = 𝐴,𝐵

Mixed strategies and Nash equilibria
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The executor performance 
depends on the 

goalkeeper's strategy

executor left executor right

goalkeeper to the right



A pair of strategies 𝜎𝐴, 𝜎𝐵 𝜖 𝑆 is not Pareto optimal in 𝑆 if there exists 
another pair 𝜎𝐴′, 𝜎𝐵′ 𝜖 𝑆 that is better for one of the players and not 

worse for the other. Otherwise 𝜎𝐴, 𝜎𝐵 𝜖 𝑆 is called Pareto optimal.

Probability distribution 𝜎𝑖𝑗 𝑖,𝑗=0,1 over set of strategies (𝐴𝑖 , 𝐵𝑗)𝑖,𝑗=0,1
of the game 𝐺 is a correlated equilibrium iffσ𝑗=0,1𝜎𝑖𝑗 𝑣𝑖𝑗𝐴 ≥ σ𝑗=0,1𝜎𝑖𝑗 𝑣−𝑖𝑗𝐴 and  σ𝑗=0,1 𝜎𝑗𝑖 𝑣𝑗𝑖𝐵 ≥ σ𝑗=0,1𝜎𝑗𝑖 𝑣𝑗(−𝑖)𝐵
where −𝑖 ≠ 𝑖 is the index of the remaining strategy.

Pareto optimality
and correlated equilibria



Efficiency of selected classical games
prisoner’s
dilemma

Bob𝐵0 𝐵1
A

lic
e 𝐴0 (3, 3) (0, 5)𝐴1 5, 0 (1, 1)

battle of the 
sexes

Bob𝐵0 𝐵1

A
lic

e 𝐴0 (3, 2) (1, 1)𝐴1 0, 0 (2, 3)

NE

NE

NE

NEΔS𝐴 × ΔS𝐵
Δ 𝑆𝐴 × 𝑆𝐵 CE

CE 𝜎𝐶𝐸 = Τ1 2 00 Τ1 2
𝜎𝐶𝐸 = 0 00 1

3𝜎00 ≥ 𝜎01, 𝜎00 ≥ 3𝜎103𝜎11 ≥ 𝜎01, 𝜎11 ≥ 3𝜎10𝜎00 = 𝜎01 = 𝜎10 = 0𝜎11 = 1



chicken Driver B
D

ri
v
e
r 

A 𝐵0 𝐵1𝐴0 (0, 0) (0, 1)𝐴1 1, 0 (−10,−10)

chicken 2 Player B

P
la

ye
r 

A 𝐵0 𝐵1𝐴0 (4, 4) (1, 5)𝐴1 5, 1 (0, 0)

NE

NE

CE

CE

Efficiency of selected classical games

𝜎𝐶𝐸 = 0 Τ1 2Τ1 2 0
𝜎𝐶𝐸 = Τ1 3 Τ1 3Τ1 3 0

𝜎00 ≤ 𝜎01, 𝜎00 ≤ 𝜎10𝜎11 ≤ 𝜎01, 𝜎11 ≤ 𝜎10𝜎00 ≤ 10𝜎01, 𝜎00 ≤ 10𝜎1010𝜎11 ≤ 𝜎01, 10𝜎11 ≤ 𝜎10



The standard quantum game in Eisert-Wilkens-Lewenstein quantization
scheme is: (Eisert et al, PRL 83, 3077 (1999)Γ𝐸𝑊𝐿 = 𝑁, 𝑈𝑋 𝑋𝜖𝑁 , Π𝑋 𝑋𝜖𝑁
where:𝑁 = 𝐴, 𝐵 is the set of players

The unitary transformations ෡𝑈𝐴 = ෡𝑈 𝜃𝐴, 𝛼𝐴, 𝛽𝐴 , ෡𝑈𝐵 = ෡𝑈 𝜃𝐵 , 𝛼𝐵 , 𝛽𝐵
෡𝑈 𝜃𝑋, 𝛼𝑋 , 𝛽𝑋 = 𝑒𝑖𝛼𝑋 𝑐𝑜𝑠 𝜃𝑋2 𝑖𝑒𝑖𝛽𝑋 𝑠𝑖𝑛 𝜃𝑋2𝑖𝑒−𝑖𝛽𝑋 𝑠𝑖𝑛 𝜃𝑋2 𝑒−𝑖𝛼𝑋 𝑐𝑜𝑠 𝜃𝑋2 ,

𝜃𝑋 ∈ 0, 𝜋 , 𝛼𝑋, 𝛽𝑋 ∈ 0,2𝜋 , 𝑋 = 𝐴, 𝐵
are quantum strategies. 

Quantum game preliminaries



Π𝑋: 𝑆𝑈(2) × 𝑆𝑈(2) → ℝ are payoff functions defined by: Π𝑋 ෡𝑈𝐴, ෡𝑈𝐵 , 𝛾 = σ𝑘,𝑙=01 𝑣𝑘,𝑙𝑋 Ψ𝑘,𝑙(𝛾) 𝑈𝐴⨂𝑈𝐵 Ψ(𝛾) 2 , 𝑋 = 𝐴, 𝐵ൿ|Ψ𝑘,𝑙(𝛾) = 𝐶𝑘⨂𝐶𝑙 ۧ|Ψ(𝛾)
In case of a fully quantum case 𝛾 = 𝜋/2 :Π𝑋 ෡𝑈𝐴, ෡𝑈𝐵 = σ𝑘,𝑙=0,1 |𝑝𝑘𝑙|2 𝑣𝑘𝑙𝑋 ,   𝑋 = 𝐴, 𝐵, 

where:

Quantum game payoffs

 

|𝑝00|2 = cos
𝜃𝐴
2
cos

𝜃𝐵
2
cos(𝛼𝐴 + 𝛼𝐵) + sin𝜃𝐴

2
sin

𝜃𝐵
2
sin(𝛽𝐴 + 𝛽𝐵), 

|𝑝01|2 = cos
𝜃𝐴
2
sin

𝜃𝐵
2
cos(𝛼𝐴 − 𝛽𝐵)+ sin𝜃𝐴

2
cos

𝜃𝐵
2
sin(𝛼𝐵 − 𝛽𝐴), 

|𝑝10|2 = cos
𝜃𝐴
2
sin

𝜃𝐵
2
sin(𝛼𝐴 − 𝛽𝐵)+ sin𝜃𝐴

2
cos

𝜃𝐵
2
cos(𝛼𝐵 − 𝛽𝐴), 

|𝑝11|2 = cos
𝜃𝐴
2
cos

𝜃𝐵
2
sin(𝛼𝐴 + 𝛼𝐵) − sin 𝜃𝐴

2
sin

𝜃𝐵
2
cos(𝛽𝐴 + 𝛽𝐵). 



The quantum EWL approach to the game is

where: ۧ|00 is the initial stateመ𝐽 = 12 ( መ𝐼 + 𝑖𝜎𝑥⨂𝜎𝑥), 𝐽† are the entangling, disentangling operators,

෡𝑈𝑋 𝜃𝑋, 𝛼𝑋, 𝛽𝑋 = 𝑒𝑖𝛼𝑋 cos 𝜃𝑋2 𝑖𝑒𝑖𝛽𝑋 sin 𝜃𝑋2𝑖𝑒−𝑖𝛽𝑋 sin 𝜃𝑋2 𝑒−𝑖𝛼𝑋 cos 𝜃𝑋2 , 𝑋 = 𝐴, 𝐵, 

EWL approach

඀ቚ𝜓𝑓 = σ𝑖,𝑗=0,1𝑝𝑖𝑗 ۧ|𝑖𝑗 , is the final state defining the game payoffs



Quantum Pauli strategies

Strategies ෡𝑈𝐴 = ෡𝑈 𝜃𝐴, 𝛼𝐴, 𝛽𝐴 and ෡𝑈𝐵 = ෡𝑈 𝜃𝐵 , 𝛼𝐵, 𝛽𝐵 , 

෡𝑈𝑋 𝜃𝑋, 𝛼𝑋, 𝛽𝑋 = 𝑒𝑖𝛼𝑋 cos 𝜃𝑋2 𝑖𝑒𝑖𝛽𝑋 sin 𝜃𝑋2𝑖𝑒−𝑖𝛽𝑋 sin 𝜃𝑋2 𝑒−𝑖𝛼𝑋 cos 𝜃𝑋2 , are generated by Pauli strategies:

ෞ𝜎𝑥 = 0 11 0 , ෞ𝜎𝑦 = 0 −𝑖𝑖 0 ,ෞ𝜎𝑧 = 1 00 −1 .

෢𝑃0 = ෡𝑈 0,0, 𝛽 = 1 00 1 ,෡𝑃𝑥 = ෡𝑈 𝜋, 𝛼, 𝜋 = 0 −𝑖−𝑖 0 ,෢𝑃𝑦 = ෡𝑈 𝜋, 𝛼, 𝜋/2 = 0 −11 0 ,෡𝑃𝑧 = ෡𝑈 0, 𝜋/2, 𝛽 = 𝑖 00 −𝑖 .

are Pauli matrices

where



B
A

𝑐𝑜𝑠2 𝜃𝐵2 𝑠𝑖𝑛2 𝜃𝐵2𝑐𝑜𝑠2 𝜃𝐴2 (𝑎00, 𝑏00) (𝑎01, 𝑏01)𝑠𝑖𝑛2 𝜃𝐴2 (𝑎10, 𝑏10) (𝑎11, 𝑏11)

Classical limit of the quantum game
Le us assume 𝛼 = 𝛽 = 0, in this case෡𝑈 𝜃, 0,0 = cos 𝜃2 መ𝐼 + 𝑖 sin 𝜃2 𝜎𝑥
is equivalent to the classical mixed strategy

and the payoffa are$𝐴(𝑩) = 𝑎(𝑏)00 cos2 𝜃𝐴2 cos2 𝜃𝐵2 + 𝑎(𝑏)01 cos2 𝜃𝐴2 sin2 𝜃𝐵2+𝑎(𝑏)10 sin2 𝜃𝐴2 cos2 𝜃𝐵2 + 𝑎(𝑏)11 sin2 𝜃𝐴2 sin2 𝜃𝐵2
𝜃𝐵 = 0 𝜃𝐵 = 𝜋



EWL with Frąckiewicz-Pykacz
parameterization

Let us restrict the set of quantum strategies to 

෡𝑈𝑋 𝜃𝑋, 𝜙𝑋 = 𝑒−𝑖𝜙𝑋 cos 𝜃𝑋2 −𝑒−𝑖𝜙𝑋 sin 𝜃𝑋2𝑒𝑖𝜙𝑋 sin𝜃𝑋2 𝑒𝑖𝜙𝑋 cos𝜃𝑋2෢𝑃0 = ෡𝑈 0,0 = 1 00 1 ,෡𝑃𝑥 = ෡𝑈 𝜋, 𝟑𝜋𝟐 = 0 −𝑖−𝑖 0 ,෢𝑃𝑦 = ෡𝑈 𝜋, 0 = 0 −11 0 ,෡𝑃𝑧 = ෡𝑈 0, 𝟑𝜋𝟐 = 𝑖 00 −𝑖 .

• In this parameterization, there are additional Nash equilibria in pure
strategies

• F-P parametrization is invariant with respect to strongly isomorphic
transformation of input games



Quantum Mixed Equilibria
prisoner’s
dilemma

Bob𝐵0 𝐵1
A

lic
e 𝐴0 (3, 3) (0, 5)𝐴1 5, 0 (1, 1)

battle of the 
sexes

Bob𝐵0 𝐵1

A
lic

e 𝐴0 (3, 2) (1, 1)𝐴1 0, 0 (2, 3)

NE

NE

NE

NEΔS𝐴 × ΔS𝐵
Δ 𝑆𝐴 × 𝑆𝐵 CE

CE

QME

𝜎𝐴 = 12 0,0 12 , 𝜎𝐵 = (0, 12 , 12 , 0) 𝜎𝐴 = 𝜎𝐵 = 12 0,0 12
QME



chicken Driver B
D

ri
v
e
r 

A 𝐵0 𝐵1𝐴0 (0, 0) (0, 1)𝐴1 1, 0 (−10,−10)

chicken 2 Player B

P
la

ye
r 

A 𝐵0 𝐵1𝐴0 (4, 4) (1, 5)𝐴1 5, 1 (0, 0)

NE

NE

CE

CE

QME

𝜎𝐴 = 12 0,0 12 , 𝜎𝐵 = (0, 12 , 12 , 0)

QME

QME

QME

𝜎𝐴 = 12 , 0, 12 , 0 , 𝜎𝐵 = (12 , 12 , 0,0)

Quantum Mixed Equilibria



Decision problem with imperfect recall

• A decision maker is planning a trip home

• The highway have two consecutive exits 1 and 2.

• Driver can Continue or Exit

• Payoffs at exits are:

• 0 – catastrophic area

• 𝜆 – home, (𝜆 > 2)
• 1 – motel  

When he arrives at an intersection, the driver cannot tell whether the 
intersection leads to the first or the second exit. The expected payoff is

where p is the probability of continuing at the intersection

The absentminded driver paradox *)

*) Piccione M., Rubinstein A. On the interpretation of decision problems with imperfect recall, Game Econ. Behav. 20, 3-24 (1997).

𝐸 𝑝 = 𝑝 1 − 𝑝 𝜆 + 𝑝2

0 1



The optimal strategy is:

and the payoff for 𝜆 > 2 is  𝐸𝑚𝑎𝑥 = 𝜆24 𝜆−1 ,  i.e. for 𝜆 = 4 𝐸𝑚𝑎𝑥 = 43
The absent-minded driver problem with n intersections:

The absentminded driver with n intersections

𝐸 𝑝 = 𝑝𝑛−1 1 − 𝑝 𝜆 + 𝑝𝑛

𝑝𝑚𝑎𝑥 = ൞ 1 if 𝜆 ≤ 2𝜆2 𝜆 − 1 if 𝜆 > 2

𝑝𝑚𝑎𝑥 = ൞ 1 if 𝜆 ≤ 𝑛(𝑛 − 1)𝜆𝑛 𝜆 − 1 if 𝜆 > 𝑛 𝐸𝑚𝑎𝑥(𝜆 = 2𝑛) = 2𝑛 𝑛−12𝑛−1 𝑛−1 𝑛→∞ 2𝑒



Let ۧ|Ψ(𝛾) = cos 𝛾2 ۧ|00 + 𝑖 sin 𝛾2 ۧ|11
be the arbitrary initial state with the (entanglement) parameter𝛾 ∈ [0, 𝜋/2]
The payoff bimatrix of the classical game is(0,0) (0,0)(𝜆, 𝜆) (1, 1)
and 𝐶0 = 1 00 1 , 𝐶1 = 0 𝑖𝑖 0

Quantum absentminded driver

represent the two possible actions of the driver „exit” and „continue”

( ൿ|Ψ𝑘,𝑙(𝛾) = 𝐶𝑘⨂𝐶𝑙 ۧ|Ψ(𝛾) )
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0 1

The basis vectors are:ൿ|Ψ0,0(𝛾) = cos 𝛾2 ۧ|00 − 𝑖 sin 𝛾2 ۧ|11ൿ|Ψ0,1(𝛾) = 𝑖 cos 𝛾2 ۧ|01 − sin 𝛾2 ۧ|10ൿ|Ψ1,0(𝛾) = −sin 𝛾2 ۧ|01 + 𝑖 cos 𝛾2 ۧ|10ൿ|Ψ1,1(𝛾) = 𝑖 sin 𝛾2 ۧ|00 − cos 𝛾2 ۧ|11
Using this, we get payoffs functions of the absentminded driver:

Quantum absentminded driver
P.
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The payoff of the absentminded driver is therefore:

Quantum absentminded driver

𝑣𝛹 𝑈, 𝛾 = 14 𝜆 ⅇ2ⅈ𝛼cos 𝛾2+ iⅇ2ⅈ𝛽sin 𝛾2 sin𝜃 2 +12 iⅇ2ⅈ𝛽 −1 + ⅇ4ⅈ𝛼 cos2 𝜃2 sin𝛾 + ⅇ2ⅈ𝛼 cos2 𝛾2 + ⅇ4ⅈ𝛽sin2 𝛾2 sin2 𝜃2 2
And its maximum is:

for

The dependence of max 𝑣𝛹 𝑈, 𝛾 on the entanglement 𝛾
is:

𝐸𝑚𝑎𝑥 = 43Classic value:

𝜆 = 4
𝐸𝑚𝑎𝑥 = 2Quantum value:
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Let us assume different initial state:

Different entangled initial state

The payoff is:

at

With the maximum:

and is equal to:

ۧ|Φ(𝛾) = cos 𝛾2 ۧ|01 + 𝑖 sin 𝛾2 ۧ|10

𝐸𝑚𝑎𝑥 = 223
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Let us assume unentangled initial state:

Unentangled initial state

the maximal payoffs for 𝜆 = 4 corresponding to different initial states are:

ۧ|Ξ(𝛾) = cos 𝛾2 ۧ|00 + 𝑖 sin 𝛾2 ۧ|10

ۧ|Ξ(𝛾)
ۧ|Φ(𝛾)
ۧ|Ψ(𝛾)

𝐸𝑚𝑎𝑥 = 43Classic value:
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Absentminded driver with n-intersections

The optimal strategy for this problem is

The initial state is:

And the orthogonal basis for n-intersections is

because

and, as a result:
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1. Correlated equilibria significantly improve paretoefficiency of Nash
equilibria and they can be obtained in quantum games

2. Quantum games give players new strategies not available in classic 
games and strongly depend on the parameterization used

3. Nash equilibria of quantum in mixed strategies are close to 
paretoefficiency of correlated equilibria

4. FP parameterization provides a strong isomorphism of the quantum 
game and gives the same Nash equilibria in mixed strategies as full 
SU(2) parameterization of EWL

5. The entanglement of initial state is not necessary to define the 
quantum absentminded driver model, the key issue is the coherence
of quantum evolution

6. The expected payoff of QAD is an increasing function of the 
entanglement 𝛾 and reaches the highest possible value of 𝜆 for 
separable initial state

Conclusions


